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Abstract

Reinforcement learning is hard in general. Yet,
in many specific environments, learning is easy.
What makes learning easy in one environment,
but difficult in another? We address this question
by proposing a simple measure of reinforcement-
learning hardness called the bad-policy density.
This quantity measures the fraction of the deter-
ministic stationary policy space that is below a
desired threshold in value. We prove that this
simple quantity has many properties one would
expect of a measure of learning hardness. Further,
we prove it is NP-hard to compute the measure
in general, but there are paths to polynomial-time
approximation. We conclude by summarizing po-
tential directions and uses for this measure.

1. Introduction

Markov Decision Processes (MDPs) have long stood as
a central model for characterizing the environments that
reinforcement-learning agents inhabit. Indeed, the gener-
ality of the MDP (and its kin) allows for the description
of small and simple environments such as grid worlds, but
also large sophisticated ones such as the problem facing a
robot organizing books on a shelf or even writing one of
the books. A typical objective of research in reinforcement
learning (RL) is to develop algorithms that can learn effi-
ciently across the entire space of MDPs. For this reason, it is
typically desirable to determine the worst case performance
of an RL algorithm across all MDPs of a chosen size, and
perhaps, horizon (Strehl et al., 2009; Azar et al., 2013).

However, understanding an algorithm’s learning efficiency
with respect to the size of the MDP misses out on the po-
tentially crucial presence of structure in a given learning
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problem that can alter the nature and difficulty of learning.
Moreover, it is likely that not all MDPs are of interest—
oftentimes, relevant subsets of finite MDP space are isolated
as being of particular use, such as those with objects (Diuk
et al., 2008), features (Guestrin et al., 2001), or deterministic
transition dynamics (Wen & Van Roy, 2013), to name a few.
In this sense, it is likely the case that forcing algorithms to
perform well on all MDPs misses out on important insights
that ensure algorithms are well behaved on the MDPs that
matter by forcing them to be competent on chaotic environ-
ments in which the rapid acquisition of competence should
be impossible. Indeed, this insight is well established in the
literature, with many notable examples establishing extreme
efficiency in the presence of structure (Mersereau et al.,
2009; Lattimore & Munos, 2014; Van Roy & Dong, 2019;
Lattimore et al., 2020; Tirinzoni et al., 2020).

In this paper, we introduce Bad-Policy Density (BPD) as a
simple new measure of RL hardness in finite MDPs. For
a given MDP, the BPD measures the fraction of policies
in the deterministic policy space that are below a desired
threshold (7) in start-state value. We argue that this measure
picks up on interesting structure of MDPs, and can help
understand the settings in which RL algorithms might be
able to achieve extreme degrees of sample efficiency. We
also advocate for this measure as a potential mechanism for
determining the difficulty of MDPs in practice—those with
higher BPD might be considered more difficult. Further,
we suggest that this measure can be useful as a diagnostic
tool to assess the impact that priors and structures have
on learning hardness, and more generally to identify what
characteristics of a task give rise to harder learning.

Previous RL Hardness Measures. Our proposal builds
on the insights established by prior hardness measures for
RL in finite MDPs (such as the mixing time (Kearns &
Singh, 2002)), which we now briefly summarize. First,
Maillard et al. (2014) address the question “How hard is
my MDP?”, with the environmental norm, measuring the
maximum next-state variance of value throughout the MDP.
This measure enables strong theoretical guarantees (Zanette
& Brunskill, 2019) and picks up on an appealing notion
of the kinds of MDPs that make RL more difficult—the
more costly a mistake might be, the harder time a learning
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algorithm may have in learning effective behavior in the
MDP. However, this measure is precisely zero for all deter-
ministic MDPs, assigning all of them the lowest difficulty
achievable under the measure. In this sense, there is room
to sharpen our understanding of what constitutes a difficult
MDP for RL. Farahmand (2011) and Bellemare et al. (2016)
measure hardness through the gap between the QQ*-values
of the best and second-best action across state—action pairs;
small action gaps induce more challenging problems as an
agent requires more samples to reduce estimation error and
identify the optimal action. The eluder dimension (Russo
& Van Roy, 2013; Osband & Van Roy, 2014; Wang et al.,
2020) of a value-function class is a worst-case measure of
the maximal number of state—action pairs that must be ob-
served before being able to extrapolate to unseen inputs.
Intuitively, if each state—action pair of an MDP yields no
information about any others, an agent has no capacity for
generalization and is forced into prolonged exploration (Du
et al., 2019; Van Roy & Dong, 2019).

Jiang et al. (2017) propose the Bellman Rank as a suitable
measure for the difficulty of Contextual Decision Processes,
a generalization of MDPs. Intuitively, the Bellman rank
considers the matrix of Bellman residuals induced by a
value-function class and creates a link between the behavior
policy used to arrive at a particular state—action pair and the
value function whose greedy policy defines behavior from
that state—action pair. Sun et al. (2019) introduce the witness
rank as an analogue to Bellman rank for model-based RL
whereas Jin et al. (2021) introduce a generalization, the
Bellman eluder dimension, as the eluder dimension on the
function class of Bellman residuals. One important note
on all three measures is their dependence on not only the
MDP but also a particular function class; in this way, these
measures address the difficulty inherent to learning in the
MDP in the specific function class containing the solution.
In contrast, BPD focuses on the former source of hardness.

Jaksch et al. (2010) propose the diameter—closely related
to the span (Bartlett & Tewari, 2009; Fruit et al., 2018)— as
a measure of MDP hardness, denoting the max number of
steps between any two states in the environment. Naturally,
a small diameter is suggestive of easier exploration, as the
agent may acquire most information about the problem in
few steps. Orthogonally, Arumugam et al. (2021) offer in-
formation sparsity as an information-theoretic measure of
the difficulty of credit assignment within a MDP. With the
exception of the environmental norm, all of the aforemen-
tioned hardness measures are concerned with characterizing
the difficulty of generalization, exploration, or credit assign-
ment. In contrast, BPD is agnostic to any one particular
obstacle to efficient RL and instead simply asks what frac-
tion of the solution space must be eliminated by any agent to
solve an MDP, without regard for how efficiently individual
agents may prune away sub-optimal solutions.

2. Bad-Policy Density

We now introduce and motivate the BPD measure. For
a MDP M = (S, A,R,T,v), we call M finite when
|S], |A| < oo and assume that M has an initial state sg € S.

Definition 1. The Bad-Policy Density (BPD) of a finite
MDP M, for a chosen T € R, is given by,

Sfor s the set of all deterministic mappings from S to A.

This measure answers a simple question about an MDP:
What fraction of deterministic stationary policies are below
T in start-state value? The BPD has several straightforward
properties, which we summarize in the following proposi-
tion.

Proposition 1. The BPD satisfies the following properties:

(i) For any real T and MDP M, 0 < BPD,(M) < 1.

(ii) For any rational number q € [0,1], there ex-
ists a choice of T and deterministic My in which
BPD, (M) = q.

(iii) For any MDP M, if 11 < 7o, then BPD, (M) <
BPD,, (M).

To summarize, this measure is applicable to both determinis-
tic and stochastic MDPs; provides a universal, bounded
scale of difficulty (the interval [0, 1]) thereby allowing
normalization-free comparison across MDPs; and ensures
monotonic increase as 7 increases. We explore more signifi-
cant aspects of the measure shortly.

Weaknesses. There are clear shortcomings to the BPD.
First, it is dependent on a potentially arbitrary choice of
7. Across MDPs, it is unclear what the right choice might
be. In this sense, a potentially more informative view of
the hardness of an MDP is given by the cumulative graph
of BPD, (M), for 7 € [VMIN, VMAX]; such a graph will
illustrate what region of value space most policies lie in.
Second, this measure is not immediately suitable to infinite
MDPs. A natural consideration is to replace the enumera-
tion of Equation 1 with a probability distribution—perhaps,
in the assumption-free case, with the uniform distribution.
Such a prospect is enticing, but is beyond the scope of
this work. Third, the measure fails to capture the impact
reward has on the learning dynamics of different RL algo-
rithms. For instance, a shaped reward function that induces
the same BPD, (M) may very well lead to a dramatically
easier learning problem for many algorithms. Fourth, the
measure makes a commitment as to the significance of the
value in s¢ (or, more generally, in expectation under a start
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state distribution). In long horizon tasks, this is not clearly
the right perspective to take. Finally, the measure excludes
stochastic policies from consideration in favor of focusing
on deterministic policies.

In spite of these shortcomings, we take the BPD to serve as
a useful and simple measure of RL difficulty in finite MDPs.
A natural extension to infinite MDPs measures the proba-
bility of sampling a policy below a particular threshold, for
some choice of probability distribution over the policy space.
We next further establish the usefulness of the measure.

3. Analysis: Properties of the BPD

We next present three properties of the BPD: 1) there exists
a simple RL algorithm whose episodic sample complexity
depends only on the BPD and +, and not on |S| or |AJ;
2) computing the BPD is NP-hard; 3) there is hope that a
polynomial-time approximation is achievable.

3.1. BPD-Dependent Sample Complexity

Consider the following algorithmic structure, letting £ de-
note the number of episodes and H denote the horizon:

7 = choose(Il;) )
V™ (so) = eval(M,m;, E, H) 3
;11 = prune(Il;, m, 7). )

Suppose choose samples a policy uniformly at random,
eval evaluates the sampled policy in the MDP, and prune
removes 7 if V™ (sq) < 7 and returns the pruned version of
II. Let us refer to this simple strategy as the POLICYSAM-
PLING algorithm. We note that the sample complexity of
this approach will depend on the BPD as follows, where 7
inversely defines the magnitude of the mistake bound.

Proposition 2. Let 6 € (0,1) be the desired confidence
parameter, M the given MDP, 1 > VMAX — 7 the mistake
threshold, and p = 1 — BPD,(M). Then, the episodic
POLICYSAMPLING algorithm has, with probability 1 — 6,
sample complexity upper bounded by

log,, (9) RMAX?In (2)
2%(1 = )°

&)

Clearly, this algorithm is entirely impractical in many con-
texts. However, it illustrates a sense in which the sample
complexity of learning may depend on the BPD, rather
than quantities such as |S| and |.A|. Identifying structure-
dependent guarantees of this form for existing algorithms
is a natural direction for future work. We also note that
the POLICYSAMPLING algorithm bears a resemblance to
sparse sampling (Kearns et al., 2002), the PAC bandit ap-
proach by Goschin et al. (2013), and to the OLIVE algorithm

by Jiang et al. (2017), which iteratively prunes candidate
value-function approximators based on the inconsistency of
Bellman residuals.

3.2. Computing BPD is NP-hard

Naturally, the usefulness of a hardness measure is likely
to depend on the practicality in applying it. We first note
that computing the number of optimal policies is poly-time
solvable by assessing the number of actions in each state
that yield Q* (s, a) as follows,

[[HaeA:Q (s,0) =V*(s)}]- ©6)
sES
Unfortunately, when we move to computing the BPD, it is
#P-hard in general. Concretely, we define the problem of
computing BPD.. (M) as follows.

Definition 2. The BPD-PROBLEM is: given a finite MDP
M and a1 € R, return BPD,(M).

To analyze the difficulty of this problem, we inspect its
decision counterpart,

Definition 3. The BPD-DECISION-PROBLEM is defined as
follows: given a finite MDP M, T € R, and a proposed
level of hardness k, return true iff BPD, (M) = k.

Theorem 1. BPD-DECISION-PROBLEM is NP-hard.

All proofs are presented in the appendix. As an immediate
corollary of the theorem, we note that the counting variant,
BPD-PROBLEM, is #P-hard.

3.3. Approximating the BPD

In light of the computational intractability of computing the
BPD, we instead seek to approximate it. In this section,
we give methods for efficiently approximating the good-
policy density (GPD), where GPD. (M) = 1—-BPD..(M);
all of the proofs and algorithms given in this section also
apply directly to the bad-policy density but it will be more
convenient to describe our results in terms of good-policy
density. There are two kinds of approximations for which
one might aim: 1) multiplicative approximations; 2) additive
approximations. In the former, we can obtain estimates that
are within an arbitrary fraction of the true quantity (and
thus, are more desirable), while in the latter, we can obtain
estimates that are within a chosen e radius of the true value
(which is problematic when the true quantity is near zero
or one, as the BPD is likely to be). The additive form is
obtained through application of Chernoff inequalities.
Proposition 3. There is a poly-time algorithm that, given a
finite MDP M, T € R and constant € > 0 computes a value
GPD, (M) satisfying |GPD, (M) — GPD,(M)| < & with
high probability.!

"Atleast 1 — Wl(n) where n is the size of the input MDP.
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Figure 1. The BPD in N-Chain problems.

However, achieving the more useful form of multiplicative
approximations is more involved. Our next result gives
a nearly-complete story as to a path for multiplicative ap-
proximation. To actually achieve the result, we first require
sampling access to a uniform distribution over “policies’
which closely resemble policies with at least 7 value on
So. In particular, given some ¢ > 0 we require access to
uniform samples from what we call T-quality ¢-controlled
policies: These are “policies” where the agent achieves at
least 7 value on sg but only controls the first ¢ states (for an
arbitrary ordering of the states) and is forced to behave opti-
mally on the remaining states. We defer a formal definition
of these “policies” to the appendix.

>

Theorem 2. There is a poly-time algorithm which, given
constant € > 0 and sample access to a uniform distribu-
tion over T-quality i-controlled policies for each v > 0, re-
turns a value GPD, (M) satisfying (1 —¢) - GPD,(M) <
GPD, (M) < (1 +¢) - GPD, (M) with high probability.

We suspect such a distribution can be sampled from in
polynomial time, as this procedure is closely related to
other polynomial-time constructions. See Jerrum & Sinclair
(1989) for a similar result on approximating the number of
matchings in a graph or Jerrum (2003) for a comprehensive
overview of such approximate counting results.

4. Discussion

We conclude with a simple case study of the BPD in small
MDPs, and by suggesting directions for future work.

ary

ar />+1

Figure 2. The structure of the N-Chain MDP.

A Small Example. First, we examine the BPD of a sim-
ple set of MDPs. Because the approximation algorithm
described by Theorem 2 requires sampling a particular dis-
tribution, we here only examine hardness of small MDPs.
Specifically, we consider an /N-Chain graph MDP with N
states and 2 actions, pictured in Figure 2. The a, action
moves the agent right, and the ay action moves the agent
left along the chain. In the rightmost state of the chain, the
reward for a, is +1. Otherwise, rewards are determined by
constants R, and Ry. As shown in Figure 1, we calculate the
BPD of two variants of N-Chain for different settings of 7.
In the left figure, we inspect a variation of N-Chain where
Ry = 0.05and R, = —0.2, ensuring that the locally greedy
action will take a, rather than a,.. In contrast, in the center
figure, we inspect N-Chain where R, = 0.5 and R, = 0.
Here, many more policies will be considered good for most
values of 7. Indeed, as expected, we find that as we vary
7 from VMIN to VMAX, the hardness of the case on the
left sharply increases, whereas this increase is considerably
more gradual in (b). In the right figure, we inspect the BPD
of the two N-chain instances as we vary N for a particular
choice of 7. As expected, we find that the harder variant of
N-chain has considerably higher BPD, and that the impact
of increased N is most dramatic early on. Further details
and an additional experiment are presented in the appendix.

Future Work. We foresee many avenues for further
research extending the BPD. First, we might remove
the BPD’s dependence on choice of 7 by instead mea-
suring the cumulative BPD across all choices of 7
( fyl\l/\ﬁzx BPD..(M)dr), rather than with respect to a fixed
7. Analysis and computation of this cumulative quantity
are a clear direction for future work. Next, the BPD might
be useful to assess the contribution made by different kinds
of structures and priors in RL—which ones most dramati-
cally reduce the BPD? The BPD could be used both as an
objective (find the structure that minimizes BPD), and as
an evaluation (does structure X or Y most reduce BPD?).
Lastly, it is natural to extend the BPD to infinite MDPs,
stochastic policies, and perhaps, learning algorithms.
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A. Proofs

We first provide proofs of central results.
Proof of Proposition 1.

First, simply note that by definition BPD, (M)
is minimal when all policies are good (so
V7™ (so) > 7,Vrem,,. yielding BPD, (M) = 0. By
the same reasoning, when the value of every policy
is greater than 7, we find BPD,. (M) is maximized
at 1.

Second, note that for any choice of rational
g € [0,1], there must exist integers z; and z2 such
that g = z—; Since ¢ can be zero, but non-negative,
we note that z; and zo must take on non-negative
quantities, too. Note that for any ¢, there exists
an z and a finite MDP with |S| and |.A| such that
Ta] = Tapst (in the trivial case, |S| =1, and | A]
can be any natural number). Then, choose 7', R, and
v such that |[{m € s : V™(sp) > 7}| = «. Note
again that this may achieved in the trivial case when

|S| = 1, and R(sg, mi(s0)) > 7(1 — =), for each m;
in the good set, and R(sq, m;(s0)) < 7(1 — 7) for
each 7; in the bad set.

Third, note that as 7 increases, the number of poli-
cies that are considered bad cannot decrease, as
any policy where V™ (sg) < 7 will also adhere to
V7™ (sp) < 7 +e¢, for arbitrarily small positive e. [

Proof of Proposition 2.

By Hoeffding’s inequality, we bound the number
of episodes of a given policy 7 needed to obtain an
e € R accurate estimate of V7 (sq) as follows,

Pr{|[V™(so) — V™(s0)| < e} >1—41, (7)

with §; = 2exp (— nf\’,ﬁi; ) We let
e =n > VMAX — 7, for the chosen 7. Moreover
we run each policy for h = ﬁ steps per episode

to yield the estimate V.

Next, note that BPD induces a geometric distribution
on the number of sampled policies needed to sample
at least one good policy. Specifically we can bound
the error probability as:

(1= BPD,(M))" < 65, (8)

for k the number of evaluated policies, and d2 €
(0,1) a confidence parameter. Then, for

k= IOglfBPDT (62) ©)

Thus, after kmh time-steps, we will find a policy
with V™ (sg) > 7 with high probability, where:

e [ is the number of policies we need to sample.
k <logi_gpp. (ar) (d2) -

e m is the number of episodes we need to evalu-
ate each policy.

VMax®In ()
1
mE
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Figure 3. Given an instance of subset sum withif = {u1,...,un},
we construct the above MDP and use a BPD solver to solve the
subset sum instance.

e h is the number of steps per-episode we let
each policy run,

h=—. (10)

Hence, letting the mistake bound n > V*(sg) — 7,

VMaX2In (;)
22(1—n)
(11
RMax?In (%)
=1og1_gpp, () (02) 555
2n*(1 — )
(12)

kmh <log;_ppp_ (ar) (92)

O

Proof of Theorem 1.

Recall that an instance of the SUBSETSUM problem
is given by a finite, non-empty set of N non-negative
integers U = {uy,us,...,un} and a target value
t. In the decision version of the SUBSETSUM
problem, we ask if there exists a subset X C U
such that ) @ = t. Recall that this problem is
NP-complete.

Given an instance of SUBSETSUM as defined above,
we construct an MDP M = (S, A, R, T,v) as
follows: add a single state s; to S for each element

u; € U. Also add two more states, an initial state sg
and terminal state st. There are two discrete actions
A = {a1,a2} and, recalling the correspondence
between states and elements of U/, we define
rewards as R(s;,a1) = u; and R(s;,a2) = 0,
Vi € [N]. All rewards for the initial and terminal
states are 0. We define the transition function
as T(s;,a,s7) = 1,Va € A,i € [N] such that
taking either action from a state corresponding to
an element of U/ leads directly to the terminal state.
Moreover, T'(sg,a,s;) = %,Va € Aji € [N]
which, from the initial state, transitions to a state
matching an element of U/ uniformly at random,
under either action. Finally, let the discount factor
7 = 1. This MDP is pictured in Figure 3.

Consider any deterministic policy 7 : S — A for
MDP M and construct a subset X = {u; : u; €
U,s; € S\ {s0,s7},7(s;) = a1} C U consist-
ing of all states in S corresponding to elements of
U where policy 7 takes action a;. Examining the
Bellman equation for the value function induced by
policy 7, we see that:

V7 (s0) = R(s0,7(s0))
+9 > T(s" | s0,7(0)V™(s)

s'eS

| X
:N;V (s4)

1 N
= N Z R(Sivﬂ'(si))

| X

NZuil {n(s;) = a1}
1

- N dow

zeX

From this, we see that computing N - V7 (sg)
for any policy 7 yields the sum of the subset in-
duced by m. LetIlpy = {7 : S — A} be the
policy class for MDP M and note that |II5;| =
|AISI = 2N+2 — 4|P(U)| where P(U) denotes
the power set of /. We see that the action choices
made by each policy 7 at states {s1,...,Sn} en-
code a unique subset of &/. Assume we have ac-
cess to a polynomial-time algorithm for computing
BPD.(M). For a small constant ¢ > 0, consider
computing (BPD%(HE)(M) — BPD%(t_E)(M))
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where
BPD 1 (41 (M)
1 1
S 35, V= )
ZQTIH S L{NVT(s0) < (t+€)}
mwellpy
1
= TP ZH 11{ ZX x§(t+s)}
4
- 1 < (t+ s)}
4|P(U>| Xw;(u) {wez);w
1
— 1 < (t +€)}
|’P(U)‘ Xﬂezp;(u) {IZX:W

where the set X, is constructed for each policy
m € Il as described above. Consequently, we’ve
shown that BPD%(t +e) (M) equals the fraction of
subsets of I/ whose total element-wise sum is upper
bounded by (¢ + ¢); a similar statement follows
for BPD 1 (,_.)(M). With an arbitrarily small
constant € > (0, we can use our polynomial-time
algorithm for the BPD problem to compute
1{(BPD | (11..,(M) = BPD  (,_,(M)) > 0}

and determine the existence of a subset X C I/ such
that )\ = = t, with arbitrarily high accuracy.
Thus, we arrive at a polynomial-time algorithm for
the decision version of the SUBSETSUM problem
and the BPD problem must be NP-hard. O

Proof of Proposition 3.

Our algorithm is as follows. We sample £ =
© (1logn) policies uniformly at random for some
sufficiently large hidden constant. We return as our
estimate of the good policy density @T(M ) the
fraction of these policies that achieve value at least 7
on sg. Recall the Chernoff-Hoeffding bound which
states that given X := Zle X, where each X is
an i.i.d. Bernoulli with a; < X; < b; with probabil-
ity 1 we have

—2¢2
Pr[|X — B[X]| > ¢] < 2exp (Zle(ba)> '

We apply this bound where each X; corresponds
to one of our samples and is 1/k if in the sampled
policy we have value at least 7 on s¢ and O otherwise.
Notice that a; = 0 and b; = 1/k for every i. Thus,

we have GPD, (M) = E[X] and GPD, (M) = X
and so

Pr[|GPD, (M) — GPD.(M)| > €]

—2¢?
<o (17
= 2exp(—0O(logn))
_ 1
~ poly(n)

as desired. O

Proof of Theorem 2.

For this proof we will assume that every state has
exactly two actions a; and as. The proof easily
generalizes to general action spaces.

In many ways the principle challenge in accurately
estimating the good policy density is overcoming the
“needle in the haystack” situation. In particular, if a
constant fraction of all policies have value at least 7
on the initial state sy then we can simply repeatedly
sample a policy uniformly at random and then use
the fraction of policies with value at least 7 on sg
among all sampled policies as our estimate of the
good policy density. Standard Chernoff-bound-type
arguments will show that such an estimate is very
accurate with only polynomially-many samples.

However, that’s assuming a whole lot of needles!
If, on the other hand, a very small number of poli-
cies have value at least 7 on sy then no such sam-
pling strategy could possibly work efficiently as one
would never sample a policy with value at least 7 on
S0.

As an alternative we will utilize a general strategy
first proposed by (Jerrum & Sinclair, 1989) to esti-
mate the permanent of a matrix (which is compu-
tationally equivalent to estimating the number of
matchings in a bipartite graph).

We will sketch this strategy in terms of MDPs.
We will construct a sequence of MDP-like things
(M;)%_, where Mj, is the original MDP in which
we would like to estimate the good policy density.
Let T; be the policies in M; with value at least 7
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on sp and let N; := |T;|. We can estimate the good
policy density by dividing N by the total number
of policies. To estimate N, we observe by a simple
telescoping multiplication that

Ne  Np1 o N
Ni_1 Ni_o No

Ny, =

Thus, to estimate the good policy density it suffices
Nz+1
to estimate every and Nj.

Let us suppose that NO is trivial to estimate given the
way we constructed our sequence. Why should we
expect that estimating the ratio N&“ is any easier
than just estimating Ni? Well suppose that our
sequence satisfied the following two smoothness
properties

LT CT;
N;

it1
= N;

2.

(SIS

The existence of such smoothness properties sug-
gests the following algorithm for estimating Nl“

sample polynomially many policies 1ndependently
and uniformly at random from 7}, and estimate

NJ(,“ as the proportion of sampled policies that are

also in T;. Since % < N;th and T;1; C T; we
know that a constant fraction of the time when we
take a sample and perform our check the sampled
policy will indeed be in 7} 1; by standard Chernoff
bound-type arguments mentioned above we will at-
tain a good estimate of our ratio. Thus, our smooth-
ness property has greatly increased the proportion
of needles to hay and in this way allows us to use a
Chernoff bound.

Thus, to realize this strategy we must construct
a sequence (M;)k_, satisfying the above smooth-
ness property where additionally Ny is efficiently
estimable.

We proceed to discuss how to construct the
aforementioned sequence. Our sequence will be
Moy, My, ..., M)s| where Mg is the MDP in which
we would like to estimate the number of policies
whose value on sg is at least 7, i.e. N‘S‘.

Our M; for i < |S| won’t exactly be an MDP per se.
Rather, M; can be intuitively thought of as an MDP
in which the agent only has control over the first %
states (for some canonical ordering over states) and
in the remaining states the agent is forced to behave
optimally.

More formally, let IIT = {7’ : 7'(s;) =
m(s;) for j < i} be all policies consistent with 7 on
the first ¢ states. Since the Bellman equations have a
fixed point, by viewing II7 as all policies in an MDP
in which every state s; for j < 7 has only the action
taken by 7 available in it, we know that there is a
policy in IIT whose value is greater than or equal
to that of all other policies in II7 on all states. Let
(rF | m) € IIT be any such optimal completion of 7.
We can now define the “value” of policy 7 in a state
in M; as follows.

Definition 4 (V" (s)). V/(s) := V(™1™ (s). That
is, the value of m in state s in M; is the value of the
optimal completion of m, i.e. (7} | ), in this state.

Notice that under this definition V|5 (s) = V™ (s)
and so indeed Mg just is our original MDP.

We can now define the above set T;.

Definition 5 (T}). Let T; := {m : 7 < V"(s0)}
be all policies that in M; have value at least T on
so. We call T; the set of all T-quality i-controlled
policies.

We begin by noting that the number of 7-quality i-
controlled policies is trivial to compute in Ny since
no matter what the policy of the agent, the agent is
forced to behave optimally on all states. Also, we
may assume that V*(sg) > 7 since otherwise the
good policy density is always 0 and can be trivially
computed as such.

Lemma 1. Ny = |A[IS1if V*(sg) > 7

We now prove the above two smoothness properties.

Lemma?2. T, CT;.

Proof. Consideram € T;,,. We will show that 7 €
T;. That is, we know that V7, | (s) = (7}, | 7) > 7
and we must argue that V;"(s) = (7} | ) > 7
for every state s. However, we need only notice
that II7, ; C IIT since the former is all policies
consistent with 7 on the first 7 4- 1 states and the
latter is all policies consistent with 7 on the first %
states. Thus, we know that (7, ; | 7) € IIT and so
an optimal policy in IIT—namely (7 | w)—must
achieve at least the same value as (7, ; | 7) on
every state—namely at least 7 on sg.

1< Nit1
Lemma3. 5 < N
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Proof. To show that % < N]i;fl , we will construct

an injective function f : T; \j“iH — T;4+1. Letting
—a; = ag and —ay = ay, our function is f(7w) = 7’
where 7' is defined as follows:

ifj=i+1

= {_‘ﬂ'(sj)
mw(s;)  olw

That is, f outputs a policy that is identical to 7 but
which takes the opposite action as 7 on state ¢ + 1.
To complete our proof we argue that if 7 € T;\ T;41
then f(ﬂ') € T’i-i-l-

To do so, it suffices to argue that (7} | 7) € H{f{)

Since (7 | m) matches 7 on the first 4 states and
f () matches 7 on the first ¢ states, we know that
f(m) also matches (7} | 7) on the first ¢ states.
However, recall that (7} | ) has value at least 7
on s, but (7, ; | 7) does not and so we know that
(mf | m) ¢ IIF_ ;. It must therefore be the case
that 7(s;41) # (7} | m)(s;4+1) which is to say that
f(m)(8i41) = (7} | w); thatis f(7) matches (7} |
7) on the (i 4+ 1)th state. But then f(7) matches
(| ) on all of the first (¢ + 1)th states and so we

know that (7 | 7) € TI/™. O

Thus, we have constructed our sequence satisfying
the aforementioned smoothness properties and we
can easily compute Ny. Assuming uniform sam-
pling access to the 7-quality ¢-controlled policies,
standard Chernoff bound arguments show we can
estimate each NN“ up to a multiplicative (1 =+ €) us-
ing the previouslgf-mentioned strategy in poly-time.
By our earlier arguments this suffices to estimate the
good policy density up to a multiplicative (1 +¢) in
poly-time. O

B. Experimental Details

We next provide additional details about the /NV-chain exper-
iment in Figure 1, and an additional experiment of the same
form in the 4 x 3 Russell & Norvig grid world (Russell &
Norvig, 2009).

IN-Chain Details. As discussed, the results pictured in
Figure 1 highlight the change of BPD..(M) for different
choices of 7 and M. We compute the BPD.. (M) for each
M by exactly computing the start-state value of every deter-
ministic policy, which is feasible given the size of the MDPs.
The start state is the left-most state in each chain, and v was
set to 0.95. For each MDP, we compute BPD (M) for
12 choices of 7, starting from VMIN and incrementing by

Approximate Bad-Policy Density of R&N Grid
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Figure 4. The BPD of variants of the Russell & Norvig grid world.
On the top plot, we visualize the BPD of the traditional grid that
includes a terminal lava state at (4, 2), in which the agent receives
—1 reward. On the bottom, we visualize the BPD of this grid world
without the lava state—instead, (4, 2) is a non-terminal empty cell
that yields 0 reward. We vary the slip probability in each problem
from 0.0 up to 1.0.

YMAX=VMIN yp to VMAX. In general, we anticipate that

most of the interesting action will happen relatively close to
BPD, (M) = 1, as on most MDPs of relevance the policy
space likely only contains a few good policies.

Grid World. We next experiment with the Russell &
Norvig grid world (Russell & Norvig, 2009), a 4x3 grid
world containing a wall at (2,2), a terminal goal at (4, 3)
that awards +1 upon entering, and a terminal lava pit at
(4,2) that awards a —1 upon entering. The agent starts at
(1,1) and can move in each of the four cardinal directions.
We introduce a slip probability e in which, for each (s, a)
pair there is an € probability that the agent will execute an
action uniformly at random with probability each time step.
In our experiment, we inspect the BPD, (M) for different
settings of € from 0.0 up to 1.0. Given the size of the policy
space of even this small grid world, we here use the additive
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approximation method to estimate BPD.. (M) for each 7
and M combination. We sample 500 policies at random
and evaluate them to form our estimate of BPD..(A/). Note
that the additive approximation method is only suitable for
MDPs where BPD, (M) is non-negligibly distant from one
or zero—otherwise it is likely that estimate will always yield
zero or one, despite the existence of several good or bad
policies. For this reason, we emphasize the significance and
important of Theorem 2, though note that there is still a
remaining step to make this approach practical.

Result are presented in Figure 4. On the top, we show the
estimated BPD of the grid that contains the lava cell for
each value of 7. On the bottom, we show the estimated BPD
of the grid with the lava cell replaced by an empty cell (so
the agent receives +0 and does not terminate at (4, 2)). We

again vary 7 from VMIN up to VMAX in increments of
VMAX—VMIN
12 :

First note that we lose monotonicity because we are esti-
mating BPD, (M) rather than computing it exactly. Next,
observe that for any middling choice of 7 (less than roughly
W), we find the problem to be trivially easy for
lower choices of slip probability when lava is present. This
is because only a few policies make their way to the lava
cell—thus, because value range includes the costly policies
that go directly into the lava, the bad policies are only those
that move directly to the lava. Even the uniform random
policy only has a small probability of arriving at the lava,
and thus even the light blue curve (when the slip probability
is 1.0) decays toward O for lower values of 7. Conversely,
once the 7 threshold requires the agent actually reaches the
goal in a timely fashion, nearly all policies are considered
below optimal, and thus the problem becomes more difficult.
While these dramatic swings are interesting and anticipated,
we suspect that for MDPs of practical interest, loggpp_(ar)
may be the more interesting property to inspect as it will
help distinguish when there are a handful of good policies
as opposed to several handfuls.

In the case with no lava, we first note that the range
[VMIN, VMaAX] is in fact different, as there is no longer
a negative reward in the MDP. Hence, we find that when the
threshold increases past 7 = 0, many policies are quickly
taken to be bad, as they do not reach the goal. The higher
the slip probability, the more policies that can be considered
good, as the stochasticity of the environment pushes more
policies toward eventually finding the goal. In contrast, we
note that when the slip probability is zero, there are only a
select few (out of |A|lS| = 4,194, 304) policies that ever
reach the goal, which is why we see the darker blue curve
rise quickly around 7 = VMIN.

As a final note, we observe that comparing the value inter-
vals between the lava and no-lava cases gives the impression
that the MDP without lava is harder, in general. This is pri-

marily due to the fact that there are few values of 7 for
which any policy might be considered good. In contrast,
when lava is present, VMIN is considerably lower. We
suggest these facts may be important when considering gen-
eralizations of the BPD that avoid explicit dependence on
7: Such generalizations may need to account for the range
of values policies can take on. One route to incorporating
such considerations is to move to a probabilistic view of the
BPD, (M), in which we assess the probability of sampling
a policy below a particular value threshold.



