Cameron Allen

Curriculum Vitae

S camallen.net✓ camallen@berkeley.edu

Yorktown Heights, NY

Summer 2019

Billerica, MA

Summer 2010

Education

Brown University	
Ph.D. in Computer Science	2023
Advisor: George D. Konidaris	
M.S. in Computer Science	2018
Advisor: George D. Konidaris	
Tufts University	
B.S. in Electrical Engineering, Summa Cum Laude	2011
Advisors: Ronald Lasser. Eric L. Miller	

Professional Experience

UC Berkeley	Berkeley, CA
Postdoctoral Scholar, advised by Stuart Russell	Sept. 2023-present

IBM Research

Research Intern, mentored by Gerald Tesauro

• Investigated novel skill-learning techniques to improve the computational efficiency of reinforcement learning and planning.

The MITRE Corporation	Bedford, MA
Senior Software Engineer	2013–2015
Communications Engineer	2011–2013

- Led software design, algorithm development, and implementation of a self-optimizing mesh network of custom, software-defined UHF radios.
- Demonstrated prototype radios to NATO representatives, and successfully persuaded UK MoD to propose adding the technology to the next SATURN specification revision, which would result in up to 15 times the range and 40 times the data throughput of previous-generation radios.
- Designed and wrote software (C++, Python, Java) and firmware (VHDL) for a variety of government communications systems.

American Science & Engineering

Research Intern, mentored by Eric L. Miller & Omar Al-Kofahi

- Researched state-of-the-art image processing techniques for denoising, segmentation, alignment, registration, warping, and filtering.
- Designed and implemented a machine learning algorithm for anomaly detection in MATLAB, which incorporated several open-source image processing libraries.

Teaching Experience

Co-Instructor

Machine Learning Workshop, 3 days, 25 students, Woods Hole Oceanographic Institution - Fall 2019

Guest Lecturer

Artificial Intelligence (CSCI 1410), 2 lectures, 145 students, Brown University – Fall 2019 Reintegrating AI (CSCI 2951-X), 2 lectures, 35 students, Brown University – Spring 2018 Artificial Intelligence (CPS 270), 1 lecture, 100 students, Duke University – Spring 2016

Teaching Assistant

Learning and Sequential Decision Making (CSCI 2951-F), *85 students*, Brown University – *Fall 2019* Artificial Intelligence (CPS 270), *100 students*, Duke University – *Spring 2016*

Invited Talks

Apr.	2023 :	UC Berkeley
Apr.	2023 :	Stanford
Mar.	2023 :	Harvard
Feb.	2023 :	Northeastern University
Jan.	2023 :	IBM Neuro-Symbolic AI Workshop
Nov.	2022 :	UMass Amherst
Nov.	2022 :	Duke University
Mar.	2021 :	Oxford
Feb.	2021 :	Arizona State University
Sep.	2011 :	American Science & Engineering
Jun.	2011 :	Gordon Research Conference on Detecting Illicit Substances

Awards

2014: Awarded MITRE Director's Award for engineering excellence
2011: Awarded merit-based Amos Emerson Dolbear Scholarship in Electrical Engineering
2010: Awarded merit-based Howard Sample Prize Scholarship in Physics

Publications

Structured Abstractions for General-Purpose Decision Making	2023
C. Allen	
PhD Thesis, October 2023. [PDF]	
Resolving Partial Observability in Decision Processes via the Lambda Discrepancy	2023
C. Allen, A. Kirtland, R. Y. Tao, D. Scott, S. Lobel, N. Petrocelli, O. Gottesman, M. Littman, G.	Konidaris
Under review at the International Conference on Learning Representations, September 2023.	
Task Scoping: Generating Task-Specific Simplifications of Open-Scope Planning Problems	2023

M. Fishman*, N. Kumar*, C. Allen, N. Danas, M. Littman, S. Tellex, and G. Konidaris At the *IJCAI Workshop on Bridging the Gap Between AI Planning and Reinforcement Learning*, August 2023. [PDF]

Coarse-Grained Smoothness for Reinforcement Learning in Metric Spaces	2023
O. Gottesman, K. Asadi, C. Allen, S. Lobel, G. Konidaris, and M. Littman	
In Proceedings of the 26th International Conference on Artificial Intelligence and Statistics, April 2023. [PI	DF]

Characterizing the Action-Generalization Gap in Deep Q-Learning P. Zhou, C. Allen, K. Asadi, and G. Konidaris In the 5th Multidisciplinary Conference on Reinforcement Learning and Decision Making, June 2022. [PDF] [2022 [Code]
Optimistic Initialization for Exploration in Continuous Control S. Lobel, O. Gottesman, C. Allen, A. Bagaria, and G. Konidaris In <i>Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence</i> , February 2022. [PDF] [Code]	2022
Learning Markov State Abstractions for Deep Reinforcement Learning C. Allen, N. Parikh, O. Gottesman, and G. Konidaris In Advances in Neural Information Processing Systems 34, December 2021. [PDF] [Code] Also at the NeurIPS Deep Reinforcement Learning Workshop, December 2020. [PDF]	2021
Efficient Black-Box Planning Using Macro-Actions with Focused Effects C. Allen, M. Katz, T. Klinger, G. Konidaris, M. Riemer, and G. Tesauro In <i>Proceedings of the 30th International Joint Conference on Artificial Intelligence</i> , August 2021. [PDF] [Conditional Search for Domain-independent Planning, August 2021. [PDF]	2021 de] DF]
Bad-Policy Density: A Measure of Reinforcement Learning Hardness D. Abel, C. Allen, D. Arumugam, D. E. Hershkowitz, M. Littman, and L. L. S. Wong In the <i>ICML Workshop on Reinforcement Learning Theory</i> , July 2021. [PDF]	2021
Mean Actor-Critic C. Allen*, K. Asadi*, M. Roderick, A. Mohamed, G. Konidaris, and M. Littman <i>arXiv:1709.00503 [stat.ML]</i> , September 2017. [PDF]	2017
Software Packages	2020
Software Packages Onager [Code] Cameron Allen, Neev Parikh A lightweight Python library for launching experiments and tuning hyperparameters, either locally or on a clu	2020 uster.
Software Packages Onager [Code] Cameron Allen, Neev Parikh A lightweight Python library for launching experiments and tuning hyperparameters, either locally or on a clu Other Projects	2020 uster.
Software Packages Onager [Code] Cameron Allen, Neev Parikh A lightweight Python library for launching experiments and tuning hyperparameters, either locally or on a clu Other Projects High-Throughput Viterbi Decoder Presentation [PDF] and software package (proprietary) • Created a novel parallelized VHDL implementation of a Viterbi decoder, which allowed for arbitrarily high data throughput.	2020 uster. 2013
 Software Packages Onager [Code] Cameron Allen, Neev Parikh A lightweight Python library for launching experiments and tuning hyperparameters, either locally or on a clu Other Projects High-Throughput Viterbi Decoder Presentation [PDF] and software package (proprietary) Created a novel parallelized VHDL implementation of a Viterbi decoder, which allowed for arbitrarily high data throughput. Code used as part of a reference implementation for a government communications system. 	2020 uster. 2013
 Software Packages Onager [Code] Cameron Allen, Neev Parikh A lightweight Python library for launching experiments and tuning hyperparameters, either locally or on a clu Other Projects High-Throughput Viterbi Decoder Presentation [PDF] and software package (proprietary) Created a novel parallelized VHDL implementation of a Viterbi decoder, which allowed for arbitrarily high data throughput. Code used as part of a reference implementation for a government communications system. Anomaly Detection in X-ray Backscatter Leg Images Presentation [PDF] and software package (proprietary) 	2020 uster. 2013 2011
 Software Packages Onager [Code] Cameron Allen, Neev Parikh A lightweight Python library for launching experiments and tuning hyperparameters, either locally or on a clu Other Projects High-Throughput Viterbi Decoder Presentation [PDF] and software package (proprietary) Created a novel parallelized VHDL implementation of a Viterbi decoder, which allowed for arbitrarily high data throughput. Code used as part of a reference implementation for a government communications system. Anomaly Detection in X-ray Backscatter Leg Images Presentation [PDF] and software package (proprietary) Designed and implemented a threat detection algorithm in MATLAB using image processing and machine learning techniques, which had a 97% detection rate and less than 5% false-alarm rate for a test set of real and simulated threats in airport X-ray scanner images. 	2020 uster. 2013 2011
 Software Packages Onager [Code] Cameron Allen, Neev Parikh A lightweight Python library for launching experiments and tuning hyperparameters, either locally or on a clu Other Projects High-Throughput Viterbi Decoder Presentation [PDF] and software package (proprietary) Created a novel parallelized VHDL implementation of a Viterbi decoder, which allowed for arbitrarily high data throughput. Code used as part of a reference implementation for a government communications system. Anomaly Detection in X-ray Backscatter Leg Images Presentation [PDF] and software package (proprietary) Designed and implemented a threat detection algorithm in MATLAB using image processing and machine learning techniques, which had a 97% detection rate and less than 5% false-alarm rate for a test set of real and simulated threats in airport X-ray scanner images. Presented results as an invited speaker at the 2011 Gordon Research Conference in Lucca, Italy. 	2020 uster. 2013 2011
 Software Packages Onager [Code] Cameron Allen, Neev Parikh A lightweight Python library for launching experiments and tuning hyperparameters, either locally or on a clu Other Projects High-Throughput Viterbi Decoder Presentation [PDF] and software package (proprietary) Created a novel parallelized VHDL implementation of a Viterbi decoder, which allowed for arbitrarily high data throughput. Code used as part of a reference implementation for a government communications system. Anomaly Detection in X-ray Backscatter Leg Images Presentation [PDF] and software package (proprietary) Designed and implemented a threat detection algorithm in MATLAB using image processing and machine learning techniques, which had a 97% detection rate and less than 5% false-alarm rate for a test set of real and simulated threats in airport X-ray scanner images. Presented results as an invited speaker at the 2011 Gordon Research Conference in Lucca, Italy. Memristor Simulator Capstone project [PDF] [Code] 	2020 uster. 2013 2011 2011
 Software Packages Onager [Code] Cameron Allen, Neev Parikh A lightweight Python library for launching experiments and tuning hyperparameters, either locally or on a clu Other Projects High-Throughput Viterbi Decoder Presentation [PDF] and software package (proprietary) Created a novel parallelized VHDL implementation of a Viterbi decoder, which allowed for arbitrarily high data throughput. Code used as part of a reference implementation for a government communications system. Anomaly Detection in X-ray Backscatter Leg Images Presentation [PDF] and software package (proprietary) Designed and implemented a threat detection algorithm in MATLAB using image processing and machine learning techniques, which had a 97% detection rate and less than 5% false-alarm rate for a test set of real and simulated threats in airport X-ray scanner images. Presented results as an invited speaker at the 2011 Gordon Research Conference in Lucca, Italy. Memristor Simulator Capstone project [PDF] [Code] Wrote an open-source modification of the SPICE circuit simulator that enabled modeling of memristor circuit components and which has been downloaded hundreds of times. 	2020 ^{uster.} 2013 2011 2011

Professional Service

Organizing Committee: ICAPS & IJCAI workshops on Planning and RL (PRL), 2023 Journal Reviewing: JMLR 2023; NCAA 2022 Conference Reviewing: ICLR 2022-2023; ICML 2023; NeurIPS 2022; AAAI 2021 Workshop Reviewing: GenPlan@NeurIPS 2023

Departmental Service

Brown University, Computer Science

- High-Performance Computing Merc, 2018–2022
- New PhD student mentor, 2018–2022
- Organized department technical writing workshop, 2021
- Organized and led department-wide code review group, 2020-2021
- Graduate Student Council representative, 2018-2019